DocumentCode :
1800950
Title :
Neural network identifying system for the gapping of main journal bearing of engine
Author :
Xuejun, Jiang ; Fei, Tang ; Zhimin, Li ; Baohui, Qi
Author_Institution :
Inst. of Manage. Sci. & Eng., Dalian Univ. of Technol., China
fYear :
1999
fDate :
1999
Firstpage :
232
Abstract :
This paper presents a neural network system-GTNN for identifying the gapping of the main journal bearing of engines. Calculation results are compared with the experiment data, and the error of them is acceptable. Finally the explanation of the calculation result is given
Keywords :
feedforward neural nets; identification; internal combustion engines; mechanical engineering computing; multilayer perceptrons; internal combustion engine; main journal bearing gapping; multilayer feedforward neural network; neural network identifying system; Fault diagnosis; Feedforward neural networks; Internal combustion engines; Multi-layer neural network; Neural networks; Paper technology; Signal analysis; Signal processing; Signal processing algorithms; Vibrations;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Vehicle Electronics Conference, 1999. (IVEC '99) Proceedings of the IEEE International
Conference_Location :
Changchun
Print_ISBN :
0-7803-5296-3
Type :
conf
DOI :
10.1109/IVEC.1999.830672
Filename :
830672
Link To Document :
بازگشت