DocumentCode :
1801807
Title :
Introduction to Modeling and Generating Probabilistic Input Processes for Simulation
Author :
Kuhl, Michael E. ; Steiger, Natalie M. ; Lada, Emily K. ; Wagner, Mary Ann ; Wilson, James R.
Author_Institution :
Dept. of Ind. & Syst. Eng., Rochester Inst. of Technol., NY
fYear :
2006
fDate :
3-6 Dec. 2006
Firstpage :
19
Lastpage :
35
Abstract :
Techniques are presented for modeling and generating the univariate and multivariate probabilistic input processes that drive many simulation experiments. Among univariate input models, emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Bezier distribution family. Among bivariate and higher-dimensional input models, emphasis is given to computationally tractable extensions of univariate Johnson distributions. Also discussed are nonparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes
Keywords :
probability; simulation; Bezier distribution family; Johnson translation system; generalized beta distribution; higher-dimensional input models; multivariate probabilistic; nonhomogeneous Poisson processes; probabilistic input processes; univariate Johnson distributions; univariate probabilistic; Computational modeling; Distributed computing; Histograms; Parameter estimation; Probability distribution; Shape control; Stochastic processes; Synthetic aperture sonar; Systems engineering and theory; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Simulation Conference, 2006. WSC 06. Proceedings of the Winter
Conference_Location :
Monterey, CA
Print_ISBN :
1-4244-0500-9
Electronic_ISBN :
1-4244-0501-7
Type :
conf
DOI :
10.1109/WSC.2006.323035
Filename :
4117588
Link To Document :
بازگشت