DocumentCode :
1805163
Title :
Mining Spatial and Spatio-Temporal Patterns in Scientific Data
Author :
Yang, Hui ; Parthasarathy, Srinivasan
Author_Institution :
The Ohio State University
fYear :
2006
fDate :
2006
Abstract :
Data mining is the process of discovering hidden and meaningful knowledge in a data set. It has been successfully applied to many real-life problems, for instance, web personalization, network intrusion detection, and customized marketing. Recent advances in computational sciences have led to the application of data mining to various scientific domains, such as astronomy and bioinformatics, to facilitate the understanding of different scientific processes in the underlying domain. In this thesis work, we focus on designing and applying data mining techniques to analyze spatial and spatiotemporal data originated in scientific domains. Examples of spatial and spatio-temporal data in scientific domains include data describing protein structures and data produced from protein folding simulations, respectively. Specifically, we have proposed a generalized framework to effectively discover different types of spatial and spatio-temporal patterns in scientific data sets. Such patterns can be used to capture a variety of interactions among objects of interest and the evolutionary behavior of such interactions. We have applied the framework to analyze data originated in the following three application domains: bioinformatics, computational molecular dynamics, and computational fluid dynamics. Empirical results demonstrate that the discovered patterns are meaningful in the underlying domain and can provide important insights into various scientific phenomena.
Keywords :
Astronomy; Bioinformatics; Computational fluid dynamics; Data analysis; Data mining; Fluid flow; Intrusion detection; Proteins; Shape; Spatiotemporal phenomena;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Engineering Workshops, 2006. Proceedings. 22nd International Conference on
Conference_Location :
Atlanta, GA, USA
Print_ISBN :
0-7695-2571-7
Type :
conf
DOI :
10.1109/ICDEW.2006.92
Filename :
1623942
Link To Document :
بازگشت