DocumentCode :
1805272
Title :
Unsupervised algorithms for distributed estimation over adaptive networks
Author :
Bin Saeed, Muhammad O. ; Zerguine, Azzedine ; Zummo, S.A. ; Sayed, Ali H.
Author_Institution :
Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, United Arab Emirates
fYear :
2012
fDate :
4-7 Nov. 2012
Firstpage :
1780
Lastpage :
1783
Abstract :
This work shows how to develop distributed versions of block blind estimation techniques that have been proposed before for batch processing. Using diffusion adaptation techniques, data are accumulated at the nodes to form estimates of the auto-correlation matrices and to carry out local SVD and/or Cholesky decomposition steps. Local estimates at neighborhoods are then aggregated to provide online streaming estimates of the parameters of interest. Simulation results illustrate the performance of the algorithms.
Keywords :
ad hoc networks; adaptive estimation; matrix algebra; singular value decomposition; Cholesky decomposition steps; ad-hoc network; adaptive networks; autocorrelation matrices; batch processing; block blind estimation techniques; diffusion adaptation techniques; distributed estimation; local SVD; online streaming; unsupervised algorithms; Blind estimation; Cholesky factorization; SVD; auto-correlation matrix; diffusion strategy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
978-1-4673-5050-1
Type :
conf
DOI :
10.1109/ACSSC.2012.6489340
Filename :
6489340
Link To Document :
بازگشت