DocumentCode :
1805717
Title :
Iterated minimum upper bound filter for tracking orbit maneuvering targets
Author :
Hua Lan ; Yan Liang ; Wei Zhang ; Feng Yang ; Quan Pan
Author_Institution :
Sch. of Autom., Northwestern Polytech. Univ., Xi´an, China
fYear :
2013
fDate :
9-12 July 2013
Firstpage :
1051
Lastpage :
1057
Abstract :
In this paper, the movement of a maneuvering low earth orbit satellite is modeled by a nonlinear stochastic system with unknown disturbance input, and an Iterated Minimum Upper Bound Filter is proposed to decrease the upper bound of the covariance of estimate errors via iterative optimization. The Monte Carlo simulation shows that the proposed filter significantly reduces the peak estimation errors due to orbit maneuvers compared with the well-known interacting multiple model method. Besides, it can accurately detect the target maneuvering time instant through thresholding the estimated fading factor.
Keywords :
Monte Carlo methods; artificial satellites; iterative methods; nonlinear systems; optimisation; stochastic systems; target tracking; Monte Carlo simulation; estimate error covariance; fading factor estimation; iterated minimum upper bound filter; iterative optimization; low earth orbit satellite; multiple model method; nonlinear stochastic system; orbit maneuvering target tracking; orbit maneuvers; peak estimation errors; target maneuvering time instant; Low earth orbit satellites; Noise; Optimization; Orbits; Target tracking; Upper bound; iterative minimum upper bound filter; iterative optimization; orbit maneuver;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion (FUSION), 2013 16th International Conference on
Conference_Location :
Istanbul
Print_ISBN :
978-605-86311-1-3
Type :
conf
Filename :
6641112
Link To Document :
بازگشت