• DocumentCode
    180635
  • Title

    Logarithmic regret bound over diffusion based distributed estimation

  • Author

    Sayin, Muhammed O. ; Denizcan Vanii, N. ; Kozat, Suleyman S.

  • Author_Institution
    Bilkent Univ., Ankara, Turkey
  • fYear
    2014
  • fDate
    4-9 May 2014
  • Firstpage
    8287
  • Lastpage
    8291
  • Abstract
    We provide a logarithmic upper-bound on the regret function of the diffusion implementation for the distributed estimation. For certain learning rates, the bound shows guaranteed performance convergence of the distributed least mean square (DLMS) algorithms to the performance of the best estimation generated with hindsight of spatial and temporal data. We use a new cost definition for distributed estimation based on the widely-used statistical performance measures and the corresponding global regret function. Then, for certain learning rates, we provide an upper-bound on the global regret function without any statistical assumptions.
  • Keywords
    least mean squares methods; parameter estimation; signal processing; spatial data structures; temporal databases; DLMS algorithms; diffusion implementation; distributed estimation; distributed least mean square; global regret function; logarithmic upper-bound; spatial data; temporal data; Algorithm design and analysis; Estimation; Parameter estimation; Performance analysis; Signal processing algorithms; Spatial databases; Vectors; Regret; diffusion; distributed; estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
  • Conference_Location
    Florence
  • Type

    conf

  • DOI
    10.1109/ICASSP.2014.6855217
  • Filename
    6855217