DocumentCode
180635
Title
Logarithmic regret bound over diffusion based distributed estimation
Author
Sayin, Muhammed O. ; Denizcan Vanii, N. ; Kozat, Suleyman S.
Author_Institution
Bilkent Univ., Ankara, Turkey
fYear
2014
fDate
4-9 May 2014
Firstpage
8287
Lastpage
8291
Abstract
We provide a logarithmic upper-bound on the regret function of the diffusion implementation for the distributed estimation. For certain learning rates, the bound shows guaranteed performance convergence of the distributed least mean square (DLMS) algorithms to the performance of the best estimation generated with hindsight of spatial and temporal data. We use a new cost definition for distributed estimation based on the widely-used statistical performance measures and the corresponding global regret function. Then, for certain learning rates, we provide an upper-bound on the global regret function without any statistical assumptions.
Keywords
least mean squares methods; parameter estimation; signal processing; spatial data structures; temporal databases; DLMS algorithms; diffusion implementation; distributed estimation; distributed least mean square; global regret function; logarithmic upper-bound; spatial data; temporal data; Algorithm design and analysis; Estimation; Parameter estimation; Performance analysis; Signal processing algorithms; Spatial databases; Vectors; Regret; diffusion; distributed; estimation;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location
Florence
Type
conf
DOI
10.1109/ICASSP.2014.6855217
Filename
6855217
Link To Document