DocumentCode :
1809622
Title :
Automatic learning of an activity-based semantic scene model
Author :
Makris, Dimitrios ; Ellis, Tim
Author_Institution :
Inf. Eng. Centre, City Univ., London, UK
fYear :
2003
fDate :
21-22 July 2003
Firstpage :
183
Lastpage :
188
Abstract :
The paper proposes an activity-based semantic model for a scene under visual surveillance. It illustrates methods that allow unsupervised learning of the model from trajectory data derived from automatic visual surveillance cameras. Results are shown for each method. Finally, the benefits of such a model in a visual surveillance system are discussed.
Keywords :
optical tracking; surveillance; target tracking; unsupervised learning; video signal processing; activity-based model; activity-based scene model; automatic learning; semantic model; semantic scene model; target tracking; trajectory data; unsupervised learning; video data; visual surveillance cameras; Cameras; Coupled mode analysis; Hidden Markov models; Inspection; Layout; Personnel; Surveillance; Target tracking; Trajectory; Unsupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Video and Signal Based Surveillance, 2003. Proceedings. IEEE Conference on
Print_ISBN :
0-7695-1971-7
Type :
conf
DOI :
10.1109/AVSS.2003.1217920
Filename :
1217920
Link To Document :
بازگشت