DocumentCode :
1811483
Title :
Exploring polarmetric infrared using classic image computing methods
Author :
Grey, Samuel ; Mendoza-Schrock, Olga ; Bourbakis, Nikolaos
Author_Institution :
Sch. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA
fYear :
2011
fDate :
20-22 July 2011
Firstpage :
286
Lastpage :
290
Abstract :
In this paper we apply classic image computing methods to a dataset of passive polarmetric long wave infrared data (LWIR). By employing several different pattern recognition techniques such as k-means clustering, support vector machine (SVM), Naive Bayes, and AdaBoost, we demonstrate accurate classification of skin vs. background with an 84% average classification rate. In addition we explored classification using different polarmetric features such as degree of linear polarization (DoLP), angle of linear polarization (AoLP), and the newly introduced, delta and rho functions.
Keywords :
feature extraction; image classification; infrared imaging; pattern clustering; support vector machines; AdaBoost; LWIR; Naive Bayes; SVM; classic image computing methods; k-means clustering; passive polarmetric long wave infrared data; pattern recognition techniques; polarmetric features; support vector machine; Boosting; Educational institutions; Remote sensing; Skin; Support vector machines; Training; Vectors; Infrared (IR); Long Wave Infrared (LWIR); polarization; skin classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Aerospace and Electronics Conference (NAECON), Proceedings of the 2011 IEEE National
Conference_Location :
Dayton, OH
ISSN :
0547-3578
Print_ISBN :
978-1-4577-1040-7
Type :
conf
DOI :
10.1109/NAECON.2011.6183116
Filename :
6183116
Link To Document :
بازگشت