DocumentCode :
1816672
Title :
Utility-Function-Driven Resource Allocation in Autonomic Systems
Author :
Tesauro, Gerald ; Das, Rajarshi ; Walsh, William E. ; Kephart, Jeffrey O.
Author_Institution :
IBM TJ Watson Res. Center, Hawthorne, NY
fYear :
2005
fDate :
13-16 June 2005
Firstpage :
342
Lastpage :
343
Abstract :
We study autonomic resource allocation among multiple applications based on optimizing the sum of utility for each application. We compare two methodologies for estimating the utility of resources: a queuing-theoretic performance model and model-free reinforcement learning. We evaluate them empirically in a distributed prototype data center and highlight tradeoffs between the two methods
Keywords :
distributed processing; learning (artificial intelligence); optimisation; queueing theory; resource allocation; autonomic systems; multiple applications; optimization; performance model; queuing theory; reinforcement learning; utility-function-driven resource allocation; Control system synthesis; Delay; Environmental management; Financial management; Learning; Linux; Protection; Prototypes; Queueing analysis; Resource management;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Autonomic Computing, 2005. ICAC 2005. Proceedings. Second International Conference on
Conference_Location :
Seattle, WA
Print_ISBN :
0-7965-2276-9
Type :
conf
DOI :
10.1109/ICAC.2005.65
Filename :
1498088
Link To Document :
بازگشت