• DocumentCode
    1819085
  • Title

    Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

  • Author

    Troudet, T. ; Garg, S. ; Merrill, W.

  • Author_Institution
    NASA Lewis Res. Center, Cleveland, OH, USA
  • Volume
    1
  • fYear
    1992
  • fDate
    7-11 Jun 1992
  • Firstpage
    308
  • Abstract
    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design
  • Keywords
    aircraft control; backpropagation; feedforward neural nets; backpropagation; error loops; multilayer feedforward neural network; multivariable aircraft control problem; performance; robust dynamic neurocontroller; sensor failures; stability; state estimator feedback loop; tracking errors; weighted sum; Aerospace control; Error correction; Multi-layer neural network; Network synthesis; Neurocontrollers; Robust control; Robust stability; Robustness; State estimation; Vehicle dynamics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 1992. IJCNN., International Joint Conference on
  • Conference_Location
    Baltimore, MD
  • Print_ISBN
    0-7803-0559-0
  • Type

    conf

  • DOI
    10.1109/IJCNN.1992.287193
  • Filename
    287193