DocumentCode :
1819496
Title :
Mean-square state and parameter estimation for stochastic linear systems with Poisson noise
Author :
Basin, Michael ; Maldonado, Juan J.
Author_Institution :
Dept. of Phys. & Math. Sci., Autonomous Univ. of Nuevo Leon, San Nicolas de los Garza, Mexico
fYear :
2011
fDate :
28-30 Sept. 2011
Firstpage :
1540
Lastpage :
1544
Abstract :
This paper presents the mean-square state and parameter estimation problem for stochastic linear systems with unknown multiplicative and additive parameters over linear observations, where unknown parameters are considered Poisson processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. The obtained optimal filter for the extended state vector also serves as the optimal identifier for the unknown parameters. Performance of the designed optimal state filter and parameter identifier is verified for both, stable and unstable, stochastic linear systems and compared against the mean-square estimator designed for polynomial systems with white Gaussian noises.
Keywords :
filtering theory; linear systems; optimal control; parameter estimation; stability; state estimation; stochastic processes; stochastic systems; Poisson noise; additive parameters; extended state vector; filtering problem; linear observation; mean-square state estimation; multiplicative parameters; optimal filter; optimal identifier; parameter estimation; polynomial systems; stability; stochastic linear system; white Gaussian noise; Linear systems; Mathematical model; Noise; Polynomials; Stochastic systems; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control (ISIC), 2011 IEEE International Symposium on
Conference_Location :
Denver, CO
ISSN :
2158-9860
Print_ISBN :
978-1-4577-1104-6
Electronic_ISBN :
2158-9860
Type :
conf
DOI :
10.1109/ISIC.2011.6045419
Filename :
6045419
Link To Document :
بازگشت