• DocumentCode
    1820175
  • Title

    Statistical deformable model applied to anatomical landmark detection

  • Author

    Izard, Camille ; Jedynak, Bruno

  • Author_Institution
    Lab. Paul Painleve, Univ. des Sci. et Technol. de Lille, Villeneuve d´´Ascq
  • fYear
    2008
  • fDate
    14-17 May 2008
  • Firstpage
    444
  • Lastpage
    447
  • Abstract
    We present a generic statistical deformable model for gray level medical images and propose to use it for template matching. Template matching methods usually rely on the arbitrary choice of a cost function and a template. Statistical models, on the other hand, allow us to derive optimal learning and matching algorithms from the modeling assumptions using likelihood maximization principles. We test the statistical deformable model on the automatic anatomical landmark detection in brain MRI, and compare its performance with the sum of squared differences (SSD), a reference cost-function for intensity-based template matching.
  • Keywords
    biomedical MRI; brain; medical image processing; statistics; anatomical landmark detection; brain MRI; gray level medical images; statistical deformable model; Automatic testing; Biomedical imaging; Cost function; Deformable models; Image registration; Image segmentation; Kernel; Magnetic resonance imaging; Pixel; Spline; anatomical landmarks; deformable template; statistical models;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on
  • Conference_Location
    Paris
  • Print_ISBN
    978-1-4244-2002-5
  • Electronic_ISBN
    978-1-4244-2003-2
  • Type

    conf

  • DOI
    10.1109/ISBI.2008.4541028
  • Filename
    4541028