Title :
Statistical deformable model applied to anatomical landmark detection
Author :
Izard, Camille ; Jedynak, Bruno
Author_Institution :
Lab. Paul Painleve, Univ. des Sci. et Technol. de Lille, Villeneuve d´´Ascq
Abstract :
We present a generic statistical deformable model for gray level medical images and propose to use it for template matching. Template matching methods usually rely on the arbitrary choice of a cost function and a template. Statistical models, on the other hand, allow us to derive optimal learning and matching algorithms from the modeling assumptions using likelihood maximization principles. We test the statistical deformable model on the automatic anatomical landmark detection in brain MRI, and compare its performance with the sum of squared differences (SSD), a reference cost-function for intensity-based template matching.
Keywords :
biomedical MRI; brain; medical image processing; statistics; anatomical landmark detection; brain MRI; gray level medical images; statistical deformable model; Automatic testing; Biomedical imaging; Cost function; Deformable models; Image registration; Image segmentation; Kernel; Magnetic resonance imaging; Pixel; Spline; anatomical landmarks; deformable template; statistical models;
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on
Conference_Location :
Paris
Print_ISBN :
978-1-4244-2002-5
Electronic_ISBN :
978-1-4244-2003-2
DOI :
10.1109/ISBI.2008.4541028