Title :
Practical considerations for GPU-accelerated CT
Author :
Mueller, Klaus ; Xu, Fang
Author_Institution :
Center for Visual Comput., Stony Brook Univ., NY
Abstract :
The introduction of programmability into commodity graphics hardware (GPUs) has enabled their use much beyond their native domain of computer graphics, in many areas of high performance computing. We have shown in previous work that many types of CT algorithms, both iterative and non-iterative, can also greatly benefit from the high degree of SIMD (same instruction multiple data) parallelism these platforms provide. In this paper, we extend this work by describing how one can deal with a number of challenges that frequently arise in practical application settings using the Feldkamp algorithm: large data, angle-dependent projection geometry, and the need for higher accuracy without compromising speed. For this, we combine our fast hardware-native 8-bit interpolation scheme with a higher precision dual-pass mechanism. This latest version of our RapidCT system runs on the most current GPU hardware, nearly eight times faster than the previous version
Keywords :
computer graphics; computerised tomography; interpolation; iterative methods; medical image processing; Feldkamp algorithm; GPU-accelerated CT; RapidCT system; commodity graphics hardware; computer graphics; hardware-native 8-bit interpolation scheme; high precision dual-pass mechanism; iterative methods; large data angle-dependent projection geometry; noniterative methods; same instruction multiple data; Circuits; Computed tomography; Dynamic range; Filters; Geometry; Image sampling; Imaging phantoms; Interpolation; Pixel; Tiles;
Conference_Titel :
Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on
Conference_Location :
Arlington, VA
Print_ISBN :
0-7803-9576-X
DOI :
10.1109/ISBI.2006.1625135