DocumentCode :
1821748
Title :
Hierarchical influence maximization for advertising in multi-agent markets
Author :
Maghami, Mahsa ; Sukthankar, Gita
Author_Institution :
Dept. of EECS, Univ. of Central Florida, Orlando, FL, USA
fYear :
2013
fDate :
25-28 Aug. 2013
Firstpage :
21
Lastpage :
27
Abstract :
Maximizing product adoption within a customer social network under a constrained advertising budget is an important special case of the general influence maximization problem. Specialized optimization techniques that account for product correlations and community effects can outperform network-based techniques that do not model interactions that arise from marketing multiple products to the same consumer base. However, it can be infeasible to use exact optimization methods that utilize expensive matrix operations on larger networks without parallel computation techniques. In this paper, we present a hierarchical influence maximization approach for product marketing that constructs an abstraction hierarchy for scaling optimization techniques to larger networks. An exact solution is computed on smaller partitions of the network, and a candidate set of influential nodes is propagated upward to an abstract representation of the original network that maintains distance information. This process of abstraction, solution, and propagation is repeated until the resulting abstract network is small enough to be solved exactly. Our proposed method scales to much larger networks and outperforms other influence maximization techniques on marketing products.
Keywords :
advertising data processing; matrix algebra; optimisation; social networking (online); abstraction process; community effects; constrained advertising budget; customer social network; distance information; hierarchical influence maximization approach; matrix operations; multi-agent markets; network patitions; network-based techniques; parallel computation techniques; product adoption; product correlations; product marketing; propagation process; scaling optimization techniques; solution process; specialized optimization techniques; Advertising; Computational modeling; Correlation; Integrated circuit modeling; Optimization; Social network services; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on
Conference_Location :
Niagara Falls, ON
Type :
conf
Filename :
6785682
Link To Document :
بازگشت