DocumentCode
1823873
Title
AdaM: Adaptive-Maximum imputation for neighborhood-based collaborative filtering
Author
Yongli Ren ; Gang Li ; Jun Zhang ; Wanlei Zhou
Author_Institution
Sch. of Inf. Technol., Deakin Univ., Clayton, VIC, Australia
fYear
2013
fDate
25-28 Aug. 2013
Firstpage
628
Lastpage
635
Abstract
In the context of collaborative filtering, the well-known data sparsity issue makes two like-minded users have little similarity, and consequently renders the k nearest neighbour rule inapplicable. In this paper, we address the data sparsity problem in the neighbourhood-based CF methods by proposing an Adaptive-Maximum imputation method (AdaM). The basic idea is to identify an imputation area that can maximize the imputation benefit for recommendation purposes, while minimizing the imputation error brought in. To achieve the maximum imputation benefit, the imputation area is determined from both the user and the item perspectives; to minimize the imputation error, there is at least one real rating preserved for each item in the identified imputation area. A theoretical analysis is provided to prove that the proposed imputation method outperforms the conventional neighbourhood-based CF methods through more accurate neighbour identification. Experiment results on benchmark datasets show that the proposed method significantly outperforms the other related state-of-the-art imputation-based methods in terms of accuracy.
Keywords
collaborative filtering; minimisation; AdaM; adaptive-maximum imputation method; data sparsity problem; imputation area; imputation error minimization; neighborhood-based collaborative filtering; neighbourhood-based CF method; recommendation purpose; Electronic mail; Filtering; Standards;
fLanguage
English
Publisher
ieee
Conference_Titel
Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on
Conference_Location
Niagara Falls, ON
Type
conf
Filename
6785768
Link To Document