Title :
Volume visualization based on statistical transfer-function spaces
Author :
Haidacher, Martin ; Patel, Daniel ; Bruckner, Stefan ; Kanitsar, Armin ; Gröller, M. Eduard
Author_Institution :
Inst. of Comput. Graphics & Algorithms, Vienna Univ. of Technol., Vienna, Austria
Abstract :
It is a difficult task to design transfer functions for noisy data. In traditional transfer-function spaces, data values of different materials overlap. In this paper we introduce a novel statistical transfer-function space which in the presence of noise, separates different materials in volume data sets. Our method adaptively estimates statistical properties, i.e. the mean value and the standard deviation, of the data values in the neighborhood of each sample point. These properties are used to define a transfer-function space which enables the distinction of different materials. Additionally, we present a novel approach for interacting with our new transfer-function space which enables the design of transfer functions based on statistical properties. Furthermore, we demonstrate that statistical information can be applied to enhance visual appearance in the rendering process. We compare the new method with 1D, 2D, and LH transfer functions to demonstrate its usefulness.
Keywords :
data visualisation; rendering (computer graphics); statistical analysis; rendering process; statistical transfer-function space; volume visualization; Algorithm design and analysis; Computer graphics; Data visualization; Medical services; Noise measurement; Rendering (computer graphics); Space technology; Statistics; Transfer functions; White noise; Transfer function; classification; noisy data; shading; statistics;
Conference_Titel :
Visualization Symposium (PacificVis), 2010 IEEE Pacific
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-6685-6
Electronic_ISBN :
978-1-4244-6686-3
DOI :
10.1109/PACIFICVIS.2010.5429615