DocumentCode :
1824614
Title :
Extended Social Tags: Identity Tags Meet Social Networks
Author :
Lajmi, Sonia ; Stan, Johann ; Hacid, Hakim ; Egyed-Zsigmond, Elöd ; Maret, Pierre
Author_Institution :
LIRIS, Univ. de Lyon, Villeurbanne, France
Volume :
4
fYear :
2009
fDate :
29-31 Aug. 2009
Firstpage :
181
Lastpage :
187
Abstract :
This paper proposes a new approach that uses social networks and common sense deduction rules to adapt the description tags of the photos for the current viewer. We exploit social graphs to enrich the tags associated to the concerned persons in the photo by following the different links between people (i.e. viewer and captured people in the photos). The main contributions of our work are: (i) addition of a more meaningful tagging layer for photos, making tags dynamic and auto-adaptable thanks to the automatic identification of the social context of the visualization. (ii) Due to this dynamics, the search in the social graphs is optimized using a data mining technique. (iii) We propose a new visualization metaphor for the tagging layer to manage users´ feedback. We also describe a system architecture and an experimental study that shows significant improvements of the tagging process and execution times on a dataset containing triples in a FOAF graph.
Keywords :
common-sense reasoning; data mining; data visualisation; graph theory; optimisation; semantic Web; social networking (online); automatic tag identification; common sense deduction rule; data mining technique; extended social tag; optimization; photo tagging layer; semantic Web; social graph; social network; user feedback; visualization metaphor; Data Mining; Media tagging; Optimization; Semantic Web; Social Networks; User Profile;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Science and Engineering, 2009. CSE '09. International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
978-1-4244-5334-4
Electronic_ISBN :
978-0-7695-3823-5
Type :
conf
DOI :
10.1109/CSE.2009.106
Filename :
5284198
Link To Document :
بازگشت