• DocumentCode
    1825540
  • Title

    High-performance longest prefix matching supporting high-speed incremental updates and guaranteed compression

  • Author

    Sundstron, M. ; Larzon, Lars-Åke

  • Author_Institution
    Dept. of Comput. Sci. & Electr. Eng., Lulea Univ. of Technol., Sweden
  • Volume
    3
  • fYear
    2005
  • fDate
    13-17 March 2005
  • Firstpage
    1641
  • Abstract
    Longest prefix matching is frequently used for IP forwarding in the Internet. Data structures used must be not only efficient, hut also robust against pathological entries caused by an adversary or misconfiguration. In this paper, we attack the longest prefix matching problem by presenting a new algorithm supporting high lookup performance, fast incremental updates and guaranteed compression ratio. High lookup performance is achieved by using only four memory accesses. Guaranteed compression ratio is achieved by combining direct indexing with an implicit tree structure and carefully choosing which construct to use when updating the forwarding table. Fast incremental updates are achieved by a new memory management technique featuring fast variable size allocation and deallocation while maintaining zero fragmentation. An IPv4 forwarding table data structure can be implemented in software or hardware within 2.7 Mb of memory to represent 218 routing entries. Incremental updates require only 752 memory accesses in worst case for the current guaranteed compression ratio. For a hardware implementation, we can use 300 MHz SRAM organized in four memory banks and four pipeline stages to achieve a guaranteed performance of 300 million lookups per second, corresponding to ∼ 100 Gbit/s wire speed forwarding, and 400,000 incremental updates per second. In measurements performed on a 3.0 GHz Pentium 4 machine using a routing table with more than 217 entries, we can forward over 27 million IPv4 packets per second, which is equivalent to wire speeds exceeding 10 Gbit/s. On the same machine and with the same routing table, we can perform over 230,000 incremental updates/second.
  • Keywords
    IP networks; Internet; storage management; telecommunication network routing; tree data structures; IP forwarding; IPv4 forwarding table data structure; Internet; SRAM; direct indexing; fast variable size allocation; forwarding table; guaranteed compression; high-performance longest prefix matching; high-speed incremental updates; memory management technique; routing table; tree structure; Data structures; Hardware; Indexing; Internet; Memory management; Pathology; Robustness; Routing; Tree data structures; Wire;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE
  • ISSN
    0743-166X
  • Print_ISBN
    0-7803-8968-9
  • Type

    conf

  • DOI
    10.1109/INFCOM.2005.1498446
  • Filename
    1498446