• DocumentCode
    183376
  • Title

    Bayesian correlated component analysis for inference of joint EEG activation

  • Author

    Poulsen, Andreas Trier ; Kamronn, Simon ; Parra, L.C. ; Hansen, Lars Kai

  • Author_Institution
    Dept. of Appl. Math. & Comput. Sci., Tech. Univ. of Denmark, Lyngby, Denmark
  • fYear
    2014
  • fDate
    4-6 June 2014
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset.
  • Keywords
    Bayes methods; electroencephalography; medical signal processing; Bayesian correlated component analysis; human information processing; joint EEG activation inference; probabilistic generative multiview model; representational universality; simulated data; well-established benchmark EEG dataset; Bayes methods; Brain modeling; Correlation; Electroencephalography; Probabilistic logic; Signal to noise ratio; Standards; EEG; Latent variable model; canonical correlation analysis; multi-view; variational in-ference;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition in Neuroimaging, 2014 International Workshop on
  • Conference_Location
    Tubingen
  • Print_ISBN
    978-1-4799-4150-6
  • Type

    conf

  • DOI
    10.1109/PRNI.2014.6858539
  • Filename
    6858539