DocumentCode :
1834617
Title :
Closed-form multi-dimensional multi-invariance ESPRIT
Author :
Wong, Kainam T. ; Zoltowski, Michael D.
Author_Institution :
Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
Volume :
5
fYear :
1997
fDate :
21-24 Apr 1997
Firstpage :
3489
Abstract :
A closed-form multi-dimensional multi-invariance generalization of the ESPRIT algorithm is introduced to exploit the entire invariance structure underlying a (possibly) multiparametric data model, thereby greatly improving estimation performance. The multiple-invariance data structure that this proposed method can handle includes: (1) multiple occurrence of one size of invariance along one or multiple parametric dimensions, (2) multiple sizes of invariances along one or multiple parametric dimensions, and (3) invariances that cross over two or more parametric dimensions. The basic (uni-dimensional uni-invariance) ESPRIT algorithm is applied in parallel to each multiple pair of matrix-pencils characterizing the multiple invariance relationships in the data model, producing multiple sets of cyclically ambiguous estimates over the multi-dimensional parameter space. A weighted least-squares hyper-plane is then fitted to these set of estimates to yield very accurate and unambiguous estimates of the signal parameters
Keywords :
array signal processing; data structures; invariance; least squares approximations; parameter estimation; ESPRIT algorithm; closed-form multi-dimensional multi-invariance generalization; cyclically ambiguous estimates; matrix-pencils; multiparametric data model; multiple parametric dimensions; multiple-invariance data structure; signal parameters estimation; weighted least-squares hyper-plane; Data models; Data structures; Goniometers; Parameter estimation; Radar applications; Radar imaging; Read only memory; Sonar applications; Wireless communication; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
Conference_Location :
Munich
ISSN :
1520-6149
Print_ISBN :
0-8186-7919-0
Type :
conf
DOI :
10.1109/ICASSP.1997.604616
Filename :
604616
Link To Document :
بازگشت