DocumentCode :
183906
Title :
Robust data map design using chance constrained optimization
Author :
Laftchiev, Emil ; Lagoa, C. ; Brennan, Sean
Author_Institution :
Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA
fYear :
2014
fDate :
4-6 June 2014
Firstpage :
4573
Lastpage :
4580
Abstract :
This paper presents a chance constrained approach to extracting linear models from reference data to be used in subsequence identification or pattern matching. Due to the ordered nature of time series data, the extracted models are sequential, with feasible domains separated by transition points. In a sequence of models, a transition point is defined as the point where one model is invalid and the next model is valid. This study contributes a probabilistic description for transition points. This probabilistic framework identifies the transition points and corresponding models such that in the presence of white Gaussian noise during subsequence detection, the transitions will still be discernible. When compared to previous work in subsequence identification, the approach in this paper has several advantages. First, it provides a rigorous selection criteria for each transition point. Second, the probabilistic method described herein effectively incorporates a priori knowledge about the expected noise characteristics. Lastly, employing this criteria in reference map creation leads to the extraction of compact model reference maps that further speed up computation online. The presented algorithm is tested using vehicle pitch data obtained from a vehicle´s Inertial Measurement Unit during road data collection experiments. When compared to previously published model (in)validation work, the testing shows that the extracted reference map here is much more compact and correspondingly computationally efficient for subsequence identification.
Keywords :
data handling; optimisation; pattern matching; probability; road vehicles; time series; chance constrained optimization; compact model reference map extraction; linear model extraction; pattern matching; probabilistic description; reference map creation; road data collection experiments; robust data map design; subsequence detection; time series data; transition points; vehicle inertial measurement unit; vehicle pitch data; white Gaussian noise; Computational modeling; Data mining; Data models; Mathematical model; Noise; Probabilistic logic; Vehicles; Automotive; Autonomous systems; Emerging control applications;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2014
Conference_Location :
Portland, OR
ISSN :
0743-1619
Print_ISBN :
978-1-4799-3272-6
Type :
conf
DOI :
10.1109/ACC.2014.6858839
Filename :
6858839
Link To Document :
بازگشت