Title :
Temporal Data Driven Naive Bayesian Text Classifier
Author :
Hao, Lili ; Hao, Lizhu
Author_Institution :
Inst. of Math., Jilin Univ., Changchun
Abstract :
Traditional text classifiers usually concern nothing about the producing time of samples, but many samples may involve seasonal features, which contain necessary prior information for classification. This paper firstly discovered the emporal relation between classes by means of chi-square test on a 2 * p dimensional contingency table for the data set of the mayor´s complain telephone texts, and then proposed a NB classifier for temporal data when driven by producing time of samples and utilized kernel regression for parameter estimation. The experiment showed a ignificantly improved classification performance.
Keywords :
Bayes methods; classification; learning (artificial intelligence); parameter estimation; regression analysis; statistical testing; text analysis; chi-square test; contingency table; kernel regression; machine learning; mayor complain telephone text; naive Bayesian text classifier; parameter estimation; temporal data; Bayesian methods; Classification tree analysis; Kernel; Mathematics; Niobium; Parameter estimation; Statistics; Telephony; Testing; Text categorization; Naive Bayesian text classifier; kernel regression estimation; mayor´s complain telephone texts; temporal data;
Conference_Titel :
Young Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for
Conference_Location :
Hunan
Print_ISBN :
978-0-7695-3398-8
Electronic_ISBN :
978-0-7695-3398-8
DOI :
10.1109/ICYCS.2008.153