DocumentCode :
184328
Title :
Extremum seeking-based iterative learning linear MPC
Author :
Benosman, M. ; Di Cairano, S. ; Weiss, A.
Author_Institution :
Mitsubishi Electr. Res. Labs., Cambridge, MA, USA
fYear :
2014
fDate :
8-10 Oct. 2014
Firstpage :
1849
Lastpage :
1854
Abstract :
In this work we study the problem of adaptive MPC for linear time-invariant uncertain models. We assume linear models with parametric uncertainties, and propose an iterative multi-variable extremum seeking (MES)-based learning MPC algorithm to learn online the uncertain parameters and update the MPC model. We show the effectiveness of this algorithm on a DC servo motor control example.
Keywords :
adaptive control; iterative learning control; linear systems; machine control; predictive control; servomechanisms; time-varying systems; uncertain systems; DC servo motor control; adaptive MPC; extremum seeking-based iterative learning; iterative multivariable extremum seeking-based learning; linear MPC; linear time-invariant uncertain models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications (CCA), 2014 IEEE Conference on
Conference_Location :
Juan Les Antibes
Type :
conf
DOI :
10.1109/CCA.2014.6981582
Filename :
6981582
Link To Document :
بازگشت