DocumentCode :
184463
Title :
Approximate dynamic programming, local or global optimal solution?
Author :
Heydari, Ali ; Balakrishnan, Sivasubramanya N.
Author_Institution :
Mech. Eng. Dept., South Dakota Sch. of Mines & Technol., Rapid City, SD, USA
fYear :
2014
fDate :
4-6 June 2014
Firstpage :
1237
Lastpage :
1242
Abstract :
The problem of global optimality analysis of approximate dynamic programming based solutions is investigated in this study. Sufficient conditions for global optimality is obtained without requiring the state penalizing terms in the cost function or the functions representing the dynamics to be convex functions. Afterwards, the theoretical results are confirmed through a qualitative analysis of an example problem.
Keywords :
dynamic programming; optimal control; ADP; approximate dynamic programming; global optimality analysis; optimal control problems; Convex functions; Cost function; Dynamic programming; Equations; Least squares approximations; Optimal control; Learning; Neural networks; Optimal control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2014
Conference_Location :
Portland, OR
ISSN :
0743-1619
Print_ISBN :
978-1-4799-3272-6
Type :
conf
DOI :
10.1109/ACC.2014.6859117
Filename :
6859117
Link To Document :
بازگشت