DocumentCode :
1844966
Title :
Gradient flows on projection matrices for subspace estimation
Author :
Srivastava, Anuj ; Fuhrmann, Daniel R.
Author_Institution :
Dept. of Stat., Florida State Univ., Tallahassee, FL, USA
Volume :
2
fYear :
1997
fDate :
2-5 Nov. 1997
Firstpage :
1317
Abstract :
Estimation of dynamic subspaces is important in blind-channel identification for multiuser wireless communications and active computer vision. Mathematically, a subspace can either be parameterized non-uniquely by a linearly-independent basis, or uniquely, by a projection matrix. We present a stochastic gradient technique for optimization on projective representations of subspaces. This technique is intrinsic, i.e. it utilizes the geometry of underlying parameter space (Grassman manifold) and constructs gradient flows on the manifold for local optimization. The addition of a stochastic component to the search process guarantees global minima and a discrete jump component allows for uncertainty in rank of the subspace (simultaneous model order estimation).
Keywords :
array signal processing; computer vision; direction-of-arrival estimation; matrix algebra; optimisation; search problems; signal representation; stochastic processes; telecommunication channels; Grassman manifold; active computer vision; blind-channel identification; discrete jump component; dynamic subspaces; global minima; gradient flows; linearly-independent basis; local optimization; multiuser wireless communications; parameter space geometry; projection matrices; projection matrix; projective representations; rank uncertainty; simultaneous model order estimation; stochastic component; stochastic gradient technique; subspace estimation; Array signal processing; Bayesian methods; Computer vision; Cost function; Geometry; Manifolds; Robot vision systems; Sensor arrays; Stochastic processes; Wireless sensor networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-8186-8316-3
Type :
conf
DOI :
10.1109/ACSSC.1997.679117
Filename :
679117
Link To Document :
بازگشت