• DocumentCode
    1845831
  • Title

    Rational-ordered discrete fractional Fourier transform

  • Author

    Hsue, Wen-Liang ; Pei, Soo-Chang

  • Author_Institution
    Dept. of Electr. Eng., Chung Yuan Christian Univ., Chungli, Taiwan
  • fYear
    2012
  • fDate
    27-31 Aug. 2012
  • Firstpage
    2124
  • Lastpage
    2127
  • Abstract
    The discrete fractional Fourier transform (DFRFT) whose order parameter is a rational number has special interesting properties that ordinary DFRFT does not possess. In this paper, periodicity and eigendecomposition properties of the rational-ordered DFRFT (RODFRFT) are investigated. We find that RODFRFT must be periodic and periods of RODFRFT are derived for all possible orders. As to the eigendecomposition of RODFRFT, we first derive eigenvalue multiplicities of the RODFRFT of order 4/p, where p is its period. The results are then generalized to RODFRFT of any rational orders.
  • Keywords
    discrete Fourier transforms; eigenvalues and eigenfunctions; eigendecomposition properties; eigenvalue multiplicities; rational-ordered DFRFT; rational-ordered discrete fractional Fourier transform; Approximation methods; Discrete Fourier transforms; Discrete transforms; Eigenvalues and eigenfunctions; Matrix decomposition; Signal processing; DFT; Fractional Fourier transform; Hermite-Gaussian function; discrete fractional Fourier transform; eigenvalue multiplicity;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European
  • Conference_Location
    Bucharest
  • ISSN
    2219-5491
  • Print_ISBN
    978-1-4673-1068-0
  • Type

    conf

  • Filename
    6333797