DocumentCode :
1849386
Title :
Stereo matching based on robust likelihoods and MST leveraged smoothness priors
Author :
Tianliang Liu ; Liang Wang ; Xiuchang Zhu
Author_Institution :
Jiangsu Provincial Key Lab. of Image Process. & Image Commun., Nanjing Univ. of Posts & Telecommun., Nanjing, China
Volume :
2
fYear :
2012
fDate :
21-25 Oct. 2012
Firstpage :
1160
Lastpage :
1164
Abstract :
This paper proposes a global stereo correspondence using robust matching likelihoods and minimum spanning tree (MST) leveraged smooth priors in a probabilistic graphical model framework. The matching likelihoods of the stereo correspondence can be robustly constructed as data term by aggregating initial matching costs from Weber local descriptors using an unsymmetrical guided filtering in a linear model. The disparity priors are devised as smooth term to characterize the smoothness constraints leveraged by the MST structure. The presented stereo approach provides an effective and efficient way to reflect robust visual dissimilarity and resolve local and regional discontinuities. Experiments demonstrate that the proposed global stereo matching method can produce piecewise smooth, accurate and dense disparity map, while removing effectively the visual ambiguity of the stereo matching problem.
Keywords :
image matching; probability; stereo image processing; Weber local descriptors; dense disparity map; global stereo correspondence; global stereo matching method; linear model; minimum spanning tree leveraged smooth priors; piecewise smooth; probabilistic graphical model framework; robust matching likelihoods; unsymmetrical guided filtering; visual ambiguity; Markov random field; QPBO optimization; Weber descriptor; minimun spanning tree; stereo vision;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing (ICSP), 2012 IEEE 11th International Conference on
Conference_Location :
Beijing
ISSN :
2164-5221
Print_ISBN :
978-1-4673-2196-9
Type :
conf
DOI :
10.1109/ICoSP.2012.6491783
Filename :
6491783
Link To Document :
بازگشت