DocumentCode :
185004
Title :
Exponential convergence of a unified CLF controller for robotic systems under parameter uncertainty
Author :
Kolathaya, Shishir ; Ames, A.D.
Author_Institution :
Dept. of Mech. Eng., Texas A&M Univ., College Station, TX, USA
fYear :
2014
fDate :
4-6 June 2014
Firstpage :
3710
Lastpage :
3715
Abstract :
This paper presents a novel method for achieving exponential convergence of a Control Lyapunov Function (CLF) based controller in a n-DOF robotic system in the presence of parameter uncertainty. Utilizing the linearity of parameters in the equations of motion, we construct the regressor and augment the state space of the robot to include a vector of unknown parameters, called base inertial parameters. The augmented state space can be utilized to realize an optimal controller that is exponentially stable while simultaneously estimating the parameters online. To achieve this result, acceleration data for a given torque input is measured and used to compute the regressor. This, in turn, is used to compute the set of base inertial parameters in the form of linear equality constraints. By demonstrating that it is not necessary for the estimated parameters to converge to the actual parameters, but rather convergence is only needed on a specified space, we are able to construct a quadratic program enforcing convergence. The end result is that exponential convergence of a Control Lyapunov Function can be guaranteed, in an optimal fashion, without prior knowledge of the parameters.
Keywords :
Lyapunov methods; asymptotic stability; manipulators; optimal control; parameter estimation; quadratic programming; regression analysis; base inertial parameters; control Lyapunov function; exponential convergence; exponential stability; linear equality constraints; motion equations; optimal controller; parameter estimation; parameter linearity; parameter uncertainty; quadratic program; regressor construction; robotic systems; state space augmentation; unified CLF controller; Aerospace electronics; Computational modeling; Convergence; Lyapunov methods; Mathematical model; Robots; Torque; Direct adaptive control; Identification; Mechanical systems/robotics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2014
Conference_Location :
Portland, OR
ISSN :
0743-1619
Print_ISBN :
978-1-4799-3272-6
Type :
conf
DOI :
10.1109/ACC.2014.6859407
Filename :
6859407
Link To Document :
بازگشت