DocumentCode :
1857979
Title :
SQLMR : A Scalable Database Management System for Cloud Computing
Author :
Hsieh, Meng-Ju ; Chang, Chao-Rui ; Ho, Li-Yung ; Wu, Jan-Jan ; Liu, Pangfeng
Author_Institution :
Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
fYear :
2011
fDate :
13-16 Sept. 2011
Firstpage :
315
Lastpage :
324
Abstract :
As the size of data set in cloud increases rapidly, how to process large amount of data efficiently has become a critical issue. MapReduce provides a framework for large data processing and is shown to be scalable and fault-tolerant on commondity machines. However, it has higher learning curve than SQL-like language and the codes are hard to maintain and reuse. On the other hand, traditional SQL-based data processing is familiar to user but is limited in scalability. In this paper, we propose a hybrid approach to fill the gap between SQL-based and MapReduce data processing. We develop a data management system for cloud, named SQLMR. SQLMR complies SQL-like queries to a sequence of MapReduce jobs. Existing SQL-based applications are compatible seamlessly with SQLMR and users can manage Tera to PataByte scale of data with SQL-like queries instead of writing MapReduce codes. We also devise a number of optimization techniques to improve the performance of SQLMR. The experiment results demonstrate both performance and scalability advantage of SQLMR compared to MySQL and two NoSQL data processing systems, Hive and HadoopDB.
Keywords :
SQL; cloud computing; database management systems; query processing; HadoopDB; Hive; MapReduce data processing; MySQL; NoSQL data processing systems; SQL-based data processing; SQL-like language; SQL-like queries; SQLMR; cloud computing; commondity machines; data management system; fault-tolerant; large data processing; scalable database management system; Data processing; Distributed databases; Indexing; Optimization; Scalability; Servers; MapReduce; NoSQL framework; SQL to NoSQL translation and optimization; cloud data management;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Processing (ICPP), 2011 International Conference on
Conference_Location :
Taipei City
ISSN :
0190-3918
Print_ISBN :
978-1-4577-1336-1
Electronic_ISBN :
0190-3918
Type :
conf
DOI :
10.1109/ICPP.2011.54
Filename :
6047200
Link To Document :
بازگشت