DocumentCode :
1858509
Title :
Exploring high-dimensional data space: Identifying optimal process conditions in photovoltaics
Author :
Suh, Changwon ; Biagioni, David ; Glynn, Stephen ; Scharf, John ; Contreras, Miguel A. ; Noufi, Rommel ; Jones, Wesley B.
Author_Institution :
Nat. Renewable Energy Lab., Golden, CO, USA
fYear :
2011
fDate :
19-24 June 2011
Abstract :
We demonstrate how advanced exploratory data analysis coupled to data-mining techniques can be used to scrutinize the high-dimensional data space of photovoltaics in the context of thin films of Al-doped ZnO (AZO), which are essential materials as a transparent conducting oxide (TCO) layer in CuInxGa1-xSe2 (CIGS) solar cells. AZO data space, wherein each sample is synthesized from a different process history and assessed with various characterizations, is transformed, reorganized, and visualized in order to extract optimal process conditions. The data-analysis methods used include parallel coordinates, diffusion maps, and hierarchical agglomerative clustering algorithms combined with diffusion map embedding.
Keywords :
II-VI semiconductors; aluminium; chemical interdiffusion; data mining; semiconductor thin films; solar cells; wide band gap semiconductors; zinc compounds; AZO thin films; CIGS solar cells; CuInxGa1-xSe2; ZnO:Al; advanced exploratory data analysis; data mining; diffusion maps; hierarchical agglomerative clustering; high-dimensional data space; optimal process conditions; parallel coordinates; photovoltaics; transparent conducting oxide layer; Clustering algorithms; Data visualization; Heating; Optical films; Optical variables measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE
Conference_Location :
Seattle, WA
ISSN :
0160-8371
Print_ISBN :
978-1-4244-9966-3
Type :
conf
DOI :
10.1109/PVSC.2011.6186065
Filename :
6186065
Link To Document :
بازگشت