DocumentCode :
1864293
Title :
Mobile Content Personalisation Using Intelligent User Profile Approach
Author :
Paireekreng, Worapat ; Wong, Kok Wai
Author_Institution :
Sch. of Inf. Technol., Murdoch Univ., Perth, WA, Australia
fYear :
2010
fDate :
9-10 Jan. 2010
Firstpage :
241
Lastpage :
244
Abstract :
As there are several limitations using mobile internet, mobile content personalization seems to be an alternative to enhance the experience of using mobile internet. In this paper, we propose the mobile content personalization framework to facilitate collaboration between the client and the server. This paper investigates clustering and classification techniques using K-means and Artificial Neural Networks (ANN) to predict user´s desired content and WAP pages based on device´s listed-oriented menu approach. We make use of the user profile and user´s information ranking matrix to make prediction of the desired information for the user. Experimental results show that it can generate promising prediction. The results show that it works best when used for predicting 1 matched menu item on the screen.
Keywords :
Internet; learning (artificial intelligence); mobile computing; neural nets; pattern classification; pattern clustering; personal computing; K-means; WAP pages; artificial neural networks; classification techniques; clustering techniques; desired information prediction; information ranking matrix; intelligent user profile approach; mobile content personalisation; mobile internet; Artificial intelligence; Artificial neural networks; Collaboration; Data mining; Information technology; Intelligent systems; Internet; Learning systems; Network servers; Web server; classification; clustering; intelligent system; mobile content personalisation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Knowledge Discovery and Data Mining, 2010. WKDD '10. Third International Conference on
Conference_Location :
Phuket
Print_ISBN :
978-1-4244-5397-9
Electronic_ISBN :
978-1-4244-5398-6
Type :
conf
DOI :
10.1109/WKDD.2010.119
Filename :
5432649
Link To Document :
بازگشت