DocumentCode :
1864604
Title :
Consensus learning for distributed coverage control
Author :
Schwager, Mac ; Slotine, Jean-Jacques ; Rus, Daniela
Author_Institution :
Comput. Sci. & Artificial Intell. Lab., MIT, Cambridge, MA
fYear :
2008
fDate :
19-23 May 2008
Firstpage :
1042
Lastpage :
1048
Abstract :
A decentralized controller is presented that causes a network of robots to converge to a near optimal sensing configuration, while simultaneously learning the distribution of sensory information in the environment. A consensus (or flocking) term is introduced in the learning law to allow sharing of parameters among neighbors, greatly increasing learning convergence rates. Convergence and consensus is proven using a Lyapunov-type proof. The controller with parameter consensus is shown to perform better than the basic controller in numerical simulations.
Keywords :
Lyapunov methods; decentralised control; distributed control; multi-robot systems; Lyapunov-type proof; consensus learning; decentralized controller; distributed coverage control; robots network; sensory information distribution; Automatic control; Control systems; Convergence; Distributed control; Learning; Numerical simulation; Optimal control; Q measurement; Robot sensing systems; Robotics and automation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on
Conference_Location :
Pasadena, CA
ISSN :
1050-4729
Print_ISBN :
978-1-4244-1646-2
Electronic_ISBN :
1050-4729
Type :
conf
DOI :
10.1109/ROBOT.2008.4543342
Filename :
4543342
Link To Document :
بازگشت