DocumentCode :
1866331
Title :
Inverse eigenvalue problem for sinusoidal frequency estimation
Author :
Feyh, German
Author_Institution :
Cirrus Logic Inc., Broomfield, CO, USA
Volume :
5
fYear :
1997
fDate :
21-24 Apr 1997
Firstpage :
3985
Abstract :
The estimation of the frequencies of sinusoids in noise is a very common problem. This paper addresses the estimation of sinusoids in a low SNR environment. This sinusoidal frequency estimation problem can be used to find the carrier frequencies and baud rates of communication waveforms after some appropriate nonlinearity. If the underlying signal model is sinusoids in white Gaussian noise and we use the forward/backward prediction framework, then the forward/backward prediction equations force a Toeplitz/Hankel structure on the data matrix. If there are M distinct sinusoids in the data and no noise, then the data matrix has rank M. Cadzow and Wilkes (1991) enhance a noisy data matrix by enforcing both the structure and the rank of the data matrix, before solving for the coefficient vector of the prediction problem. Besides the Toeplitz/Hankel structure, the estimated singular values of the data matrix are also enforced. Using more information extracted from the original data matrix extends the threshold to lower SNR values
Keywords :
Gaussian noise; Hankel matrices; Toeplitz matrices; eigenvalues and eigenfunctions; frequency estimation; inverse problems; prediction theory; signal processing; white noise; Toeplitz/Hankel structure; baud rates; carrier frequencies; coefficient vector; communication waveforms; estimated singular values; forward/backward prediction equations; inverse eigenvalue problem; low SNR; noisy data matrix; nonlinearity; signal enhancement; signal model; sinusoidal frequency estimation; threshold; white Gaussian noise; Covariance matrix; Eigenvalues and eigenfunctions; Equations; Frequency estimation; Gaussian noise; Logic; Parameter estimation; Random variables; Signal to noise ratio; Working environment noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
Conference_Location :
Munich
ISSN :
1520-6149
Print_ISBN :
0-8186-7919-0
Type :
conf
DOI :
10.1109/ICASSP.1997.604803
Filename :
604803
Link To Document :
بازگشت