Title :
Multi-model Ontology-Based Hybrid Recommender System in E-learning Domain
Author :
Zhuhadar, Leyla ; Nasraoui, Olfa ; Wyatt, Robert ; Romero, Elizabeth
Abstract :
This paper introduces a multi-model ontology-based framework for semantic search of educational content in E-learning repository of courses, lectures, multimedia resources, etc. This hybrid recommender system is driven by two types of recommendations: content-based (domain ontology model) and rule-based (learner’s interest-based and cluster-based). The domain ontology is used to represent the learning materials. In this context, the ontology is composed by a hierarchy of concepts and sub-concepts. Whereas, the learner’s ontology model represents a subset of the domain ontology, and the cluster-based recommendations are added as additional semantic recommendations to the model. Combining the content-based with the rule-based provides the user with hybrid recommendations. All of them influenced the re-ranking of the retrieved documents with different weights. Our proposed approach has been implemented on the HyperManyMedia1 platform.
Keywords :
Collaboration; Data mining; Educational technology; Electronic learning; Intelligent agent; Ontologies; Paper technology; Recommender systems; USA Councils; Web mining; Information Retrieval; Ontology; Personalization; Recommender System; Semantic;
Conference_Titel :
Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT '09. IEEE/WIC/ACM International Joint Conferences on
Conference_Location :
Milan, Italy
Print_ISBN :
978-0-7695-3801-3
Electronic_ISBN :
978-1-4244-5331-3
DOI :
10.1109/WI-IAT.2009.238