• DocumentCode
    1869737
  • Title

    Stochastic optimization of control parameters in genetic algorithms

  • Author

    Wu, Q.H. ; Cao, Y.J.

  • Author_Institution
    Dept. of Electr. Eng. & Electron., Liverpool Univ., UK
  • fYear
    1997
  • fDate
    13-16 Apr 1997
  • Firstpage
    77
  • Lastpage
    80
  • Abstract
    The genetic search can be modeled as a controlled Markovian process, the transition of which depends on control parameters (probabilities of crossover and mutation). This paper proposes a stochastic gradient and develops a stochastic approximation algorithm to optimize control parameters of genetic algorithms (GAs). The optimal values of control parameters can be found from a recursive estimation of control parameters provided by the stochastic approximation algorithm. The algorithm performs in finding a stochastic gradient of a given performance index and adapting the control parameters in the direction of descent. Numerical results based on the classical multimodal functions are given to show the effectiveness of the proposed algorithm
  • Keywords
    approximation theory; genetic algorithms; probability; recursive estimation; stochastic processes; classical multimodal functions; control parameters; controlled Markovian process; crossover; genetic algorithms; mutation; recursive estimation; stochastic approximation algorithm; stochastic gradient; stochastic optimization; Approximation algorithms; Convergence; Encoding; Genetic algorithms; Genetic mutations; Optimal control; Performance analysis; Proposals; Recursive estimation; Stochastic processes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Evolutionary Computation, 1997., IEEE International Conference on
  • Conference_Location
    Indianapolis, IN
  • Print_ISBN
    0-7803-3949-5
  • Type

    conf

  • DOI
    10.1109/ICEC.1997.592272
  • Filename
    592272