DocumentCode :
1871686
Title :
Neural models for transistor and mixed-level test generation
Author :
Cooper, Carolina L C ; Bushnell, Michael L.
Author_Institution :
Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA
fYear :
1994
fDate :
25-28 Apr 1994
Firstpage :
208
Lastpage :
213
Abstract :
We derive new neural network models for n and pFET transistors for use in switch-level test generation. Special characteristics included in the model are bidirectionality and an explicit representation of the substrate. We prove the optimality of these models. The results for an example CMOS circuit indicate that modeling circuit portions at the switch-level allows more accurate tests for transistor stuck-open faults without giving up the speed of gate-level ATPG
Keywords :
CMOS integrated circuits; Hopfield neural nets; automatic testing; insulated gate field effect transistors; integrated circuit testing; integrated logic circuits; logic testing; semiconductor device models; CMOS circuit; mixed-level test generation; nMOSFET; neural network models; pMOSFET; substrate representation; switch-level test generation; transistor stuck-open faults; Automatic test pattern generation; CMOS logic circuits; Circuit faults; Circuit testing; Logic circuits; Logic devices; Neural networks; Neurons; Semiconductor device modeling; Switching circuits;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
VLSI Test Symposium, 1994. Proceedings., 12th IEEE
Conference_Location :
Cherry Hill, NJ
Print_ISBN :
0-8186-5440-6
Type :
conf
DOI :
10.1109/VTEST.1994.292311
Filename :
292311
Link To Document :
بازگشت