DocumentCode :
1874941
Title :
Atomic decomposition dedicated to AVC and spatial SVC prediction
Author :
Martin, Aurélie ; Fuchs, Jean-Jacques ; Guillemot, Christine ; Thoreau, Dominique
Author_Institution :
IRIS A, Univ. de Rennes, Rennes
fYear :
2008
fDate :
12-15 Oct. 2008
Firstpage :
2492
Lastpage :
2495
Abstract :
This work, we propose the use of sparse signal representation techniques to solve the problem of closed-loop spatial image prediction. The reconstruction of signal in the block to predict is based on basis functions selected with the matching pursuit (MP) iterative algorithm, to best match a causal neighborhood. We evaluate this new method in terms of PSNR and bitrate in a H.264/AVC encoder. Experimental results indicate an improvement of rate-distortion performance. In this paper, we also present results concerning the use of this technique for intra-inter layer prediction refinement, in a scalable video coding (SVC) like scheme.
Keywords :
image matching; image reconstruction; image representation; iterative methods; rate distortion theory; video coding; H.264/AVC encoder; SVC; atomic decomposition; closed-loop spatial image prediction; intra-inter layer prediction refinement; matching pursuit iterative algorithm; rate-distortion performance; scalable video coding; signal reconstruction; sparse signal representation; Automatic voltage control; Bit rate; Image reconstruction; Iterative algorithms; Matching pursuit algorithms; PSNR; Rate-distortion; Signal representations; Static VAr compensators; Video coding; atomic decomposition; extrapolation; intra-prediction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on
Conference_Location :
San Diego, CA
ISSN :
1522-4880
Print_ISBN :
978-1-4244-1765-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2008.4712299
Filename :
4712299
Link To Document :
بازگشت