Title :
Polarimetric optimization for biophysical parameter estimation
Author_Institution :
Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA
Abstract :
This paper explores polarization optimization of synthetic aperture radar (SAR) data, constrained to maximize some biophysical data conditions, such as the residual sum of squares (RSS). Based on a-priori information, the optimization helps to identify the polarization most sensitive (and least sensitive) to the quantity of interest, with best predictive characteristics. In this presentation, the relationship of SAR polarimetry to forest biomass is considered. The results are presented over boreal forest using DLR´s airborne E-SAR sensor data at Land P-band frequencies.
Keywords :
airborne radar; forestry; geophysics computing; optimisation; parameter estimation; radar polarimetry; remote sensing by radar; synthetic aperture radar; vegetation; DLR airborne E-SAR sensor; Land P-band frequencies; SAR data; SAR polarimetry; a-priori information; biophysical data conditions; biophysical parameter estimation; boreal forest; forest biomass; polarimetric optimization; polarization optimization; residual sum of squares; synthetic aperture radar; Biomass; Correlation; Estimation; L-band; Optimization; Radar imaging; Scattering; Polarimetry; forest biomass; optimization; synthetic aperture radar (SAR);
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International
Conference_Location :
Vancouver, BC
Print_ISBN :
978-1-4577-1003-2
DOI :
10.1109/IGARSS.2011.6049156