DocumentCode :
1878211
Title :
Density estimation using a new AIC-type criterion and the EM algorithm for a linear combination of Gaussians
Author :
Ali, Asem M. ; Farag, Aly A.
Author_Institution :
Comput. Vision & Image Process. Lab., Univ. of Louisville, Louisville, KY
fYear :
2008
fDate :
12-15 Oct. 2008
Firstpage :
3024
Lastpage :
3027
Abstract :
We propose a new approach that approximates an empirical probability density function of scalar data with a linear combination of Gaussians (LCG). The proposed algorithm approximates the marginal density of each class using a Gaussian distribution. Number of the classes and their distributions parameters are estimated using a new Akaike Information Criterion (AlC)-type criterion and the Expectation- Maximization (EM) approach. Each class does not follow perfect Gaussian distribution so we refine the initial LCG model using a modified EM algorithm. The modified EM algorithm approximates the marginal density of each class using a LCG with positive and negative components. Experiments in segmenting multimodal medical images show that the developed technique gives promising accurate results.
Keywords :
Gaussian processes; expectation-maximisation algorithm; image segmentation; contourlet transform; geometric feature extraction; image enhancement; image restoration; multiresolution generalized directional filter bank design; multiscale generalized directional filter bank design; shearlet transform; shift-invariant overcomplete representation; Clustering algorithms; Function approximation; Gaussian approximation; Gaussian distribution; Gaussian processes; Image processing; Image segmentation; Parameter estimation; Probability density function; Probability distribution; AIC; Density Estimation; EM; LCG;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on
Conference_Location :
San Diego, CA
ISSN :
1522-4880
Print_ISBN :
978-1-4244-1765-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2008.4712432
Filename :
4712432
Link To Document :
بازگشت