Title :
Urban building recognition during significant temporal variations
Author :
Nguyen, G.P. ; Andersen, H.J. ; Christensen, M.F.
Author_Institution :
Dept. of Media Technol. & Eng. Sci., Aalborg Univ., Aalborg
Abstract :
In literature, existing researches on building recognition mainly concentrate on scales, rotations, and viewpoints variance. In urban environment, large temporal variations of weather and lighting conditions should also be considered as major challenges for robust recognition. For instances, there are differences between images captured during daytime and nighttime, especially significant changes in building appearances between seasons because of the differences in light setting. To date, these large temporal variation issues have not been fully investigated. In this paper, we therefore focus on constructing a system that deals with the temporal difference factors in recognizing urban buildings. In order to build such a system, two main criteria are raised, namely the efficiency of the recognition algorithm and the speed for interactive search purpose. For recognition purpose, we exploit the MOPS features (Multi-scale Oriented Patches) in [2], which extract features of patches around interest points. To speed up the searching process, we employ the vocabulary tree based search technique in [12]. Our final system shows high performance in recognizing buildings under significant temporal variations with a fast processing reaction.
Keywords :
building; feature extraction; image recognition; lighting; tree searching; MOPS feature extraction; lighting condition; multi scale oriented patch; temporal variation; urban building recognition; vocabulary tree based search technique; Augmented reality; Buildings; Cameras; Feature extraction; Image recognition; Layout; Light sources; Object detection; Robustness; Vocabulary; Building recognition; large temporal variations; multi-scale oriented patches; vocabulary tree;
Conference_Titel :
Applications of Computer Vision, 2008. WACV 2008. IEEE Workshop on
Conference_Location :
Copper Mountain, CO
Print_ISBN :
978-1-4244-1913-5
Electronic_ISBN :
1550-5790
DOI :
10.1109/WACV.2008.4544000