Title :
Robust chirp parameter estimation for Hann windowed signals
Author :
Master, Aaron S. ; Liu, Yi-Wen
Author_Institution :
Center for Comput. Res. in Music & Acousti., Stanford Univ., CA, USA
Abstract :
The sinusoidal model has been a fundamentally important signal representation for coding and analysis of audio. We present an enhancement to sinusoidal modeling in the form of a linear frequency chirp parameter estimator applicable to Hann-windowed quasi-sinusoidal signals. The estimator relies on models of the phase curvature and peak width of a given chirp signal´s FFT magnitude domain peak. We show that different models are applicable for smaller and larger values of the chirp parameter, derived respectively from Taylor series and Fresnel integral analysis of the signal. We construct an estimator for the transition region between the two models via a neural net. Results indicate that the estimator is robust to noise and outperforms any known chirp parameter estimators for Hann windowed signals.
Keywords :
audio coding; fast Fourier transforms; neural nets; parameter estimation; FFT magnitude domain peak; Fresnel integral analysis; Hann windowed signals; Taylor series; audio coding; audio signal analysis; linear frequency chirp parameter estimator; neural net; parameter estimation; sinusoidal modeling; Chirp; Frequency estimation; Fresnel reflection; Neural networks; Parameter estimation; Phase estimation; Robustness; Signal analysis; Signal representations; Taylor series;
Conference_Titel :
Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on
Print_ISBN :
0-7803-7965-9
DOI :
10.1109/ICME.2003.1221717