DocumentCode :
1883353
Title :
Spatial-spectral unmixing using fuzzy local information
Author :
Zare, Alina
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA
fYear :
2011
fDate :
24-29 July 2011
Firstpage :
1139
Lastpage :
1142
Abstract :
Hyperspectral unmixing estimates the proportions of materials represented within a spectral signature. The over whelming majority of hyperspectral unmixing algorithms are based entirely on the spectral signatures of each individual pixel and do not incorporate the spatial information found in a hyperspectral data cube. In this work, a spectral unmixing algorithm, the Local Information Proportion estimation (LIP) algorithm, is presented. The proposed LIP algorithm incorporates spatial information while determining the proportions of materials found within a spectral signature. Spatial information is incorporated through the addition of a spatial term that regularizes proportion value estimates based on the weighted proportion values of neighboring pixels. Results are shown in the AVIRIS Indian Pines hyperspectral data set.
Keywords :
fuzzy set theory; geophysical image processing; AVIRIS; LIP; fuzzy local information; hyperspectral data cube; hyperspectral unmixing estimation; local information proportion; spatial information; spatial spectral unmixing; spectral signature; weighted proportion values; Equations; Hyperspectral imaging; Mathematical model; Signal processing algorithms; Smoothing methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International
Conference_Location :
Vancouver, BC
ISSN :
2153-6996
Print_ISBN :
978-1-4577-1003-2
Type :
conf
DOI :
10.1109/IGARSS.2011.6049398
Filename :
6049398
Link To Document :
بازگشت