• DocumentCode
    189154
  • Title

    Learning-based adaptive control for nonlinear systems

  • Author

    Benosman, Mouhacine

  • Author_Institution
    Mitsubishi Electr. Res. Labs., Cambridge, MA, USA
  • fYear
    2014
  • fDate
    24-27 June 2014
  • Firstpage
    920
  • Lastpage
    925
  • Abstract
    We present in this paper a preliminary result on learning-based adaptive trajectory tracking control for nonlinear systems. We propose, for the class of nonlinear systems with parametric uncertainties which can be rendered integral Input-to-State stable w.r.t. the parameter estimation errors input, that it is possible to merge together the integral Input-to-State stabilizing feedback controller and a model-free extremum seeking (ES) algorithm to realize a learning-based adaptive controller. We show the efficiency of this approach on a mechatronic example.
  • Keywords
    adaptive control; learning systems; nonlinear control systems; optimal control; parameter estimation; state feedback; trajectory control; uncertain systems; integral input-to-state stabilizing feedback controller; learning-based adaptive controller; learning-based adaptive trajectory tracking control; model-free ES algorithm; model-free extremum seeking algorithm; nonlinear systems; parameter estimation errors; parametric uncertainties; Adaptation models; Adaptive control; Cost function; Nonlinear systems; Trajectory; Uncertainty; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 2014 European
  • Conference_Location
    Strasbourg
  • Print_ISBN
    978-3-9524269-1-3
  • Type

    conf

  • DOI
    10.1109/ECC.2014.6862378
  • Filename
    6862378