• DocumentCode
    1894032
  • Title

    Blind minimax estimators: improving on least-squares estimation

  • Author

    Ben-Haim, Zvika ; Eldar, Yonina C.

  • Author_Institution
    Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa
  • fYear
    2005
  • fDate
    17-20 July 2005
  • Firstpage
    545
  • Lastpage
    550
  • Abstract
    We consider the linear regression problem of estimating an unknown, deterministic parameter vector based on measurements corrupted by colored Gaussian noise. We present and analyze estimators based on the blind minimax approach, a technique whereby a parameter set is estimated from measurements and then used to construct a minimax estimator. We demonstrate analytically that the obtained estimators strictly dominate the least-squares estimator (LSE), i.e.. they achieve lower mean-squared error for any value of the parameter vector. Simulations show that these estimators outperform Bock´s estimator, which also dominates the LSE
  • Keywords
    Gaussian noise; least mean squares methods; minimax techniques; parameter estimation; regression analysis; signal processing; LSE; blind minimax approach; colored Gaussian noise; least-squares estimator; linear regression problem; mean-squared error; parameter estimation; Covariance matrix; Electric variables measurement; Gaussian noise; Least squares approximation; Linear regression; Minimax techniques; Noise measurement; Parameter estimation; Rendering (computer graphics); Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on
  • Conference_Location
    Novosibirsk
  • Print_ISBN
    0-7803-9403-8
  • Type

    conf

  • DOI
    10.1109/SSP.2005.1628655
  • Filename
    1628655