DocumentCode
1894032
Title
Blind minimax estimators: improving on least-squares estimation
Author
Ben-Haim, Zvika ; Eldar, Yonina C.
Author_Institution
Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa
fYear
2005
fDate
17-20 July 2005
Firstpage
545
Lastpage
550
Abstract
We consider the linear regression problem of estimating an unknown, deterministic parameter vector based on measurements corrupted by colored Gaussian noise. We present and analyze estimators based on the blind minimax approach, a technique whereby a parameter set is estimated from measurements and then used to construct a minimax estimator. We demonstrate analytically that the obtained estimators strictly dominate the least-squares estimator (LSE), i.e.. they achieve lower mean-squared error for any value of the parameter vector. Simulations show that these estimators outperform Bock´s estimator, which also dominates the LSE
Keywords
Gaussian noise; least mean squares methods; minimax techniques; parameter estimation; regression analysis; signal processing; LSE; blind minimax approach; colored Gaussian noise; least-squares estimator; linear regression problem; mean-squared error; parameter estimation; Covariance matrix; Electric variables measurement; Gaussian noise; Least squares approximation; Linear regression; Minimax techniques; Noise measurement; Parameter estimation; Rendering (computer graphics); Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on
Conference_Location
Novosibirsk
Print_ISBN
0-7803-9403-8
Type
conf
DOI
10.1109/SSP.2005.1628655
Filename
1628655
Link To Document