DocumentCode :
1900495
Title :
A Bayesian Approach for Uncovering Gene Network Motifs
Author :
Yin, Yufang ; Huang, Yufei ; Shanmugam, Viji ; Brun, Marcel ; Hua, Jianping ; Dougherty, Edward R.
Author_Institution :
Univ. of Texas at San Antonio, San Antonio
fYear :
2007
fDate :
10-12 June 2007
Firstpage :
1
Lastpage :
2
Abstract :
Gene network motifs are the recurring regulatory structural patterns in gene networks. For uncovering gene network motifs, we investigate a novel Bayesian approach based on the popular turbo algorithm. The motivation for using turbo algorithm is based on the subtle similarity between the network motifs detection and turbo decoding in communications. The proposed method has been tested on two types of human cancer microarray data.
Keywords :
Bayes methods; cancer; genetic engineering; genetics; Bayesian approach; gene network; human cancer microarray data; regulatory structural patterns; turbo algorithm; turbo decoding; Bayesian methods; Bioinformatics; Cancer detection; Decoding; Genomics; Humans; Neoplasms; Robustness; Testing; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Genomic Signal Processing and Statistics, 2007. GENSIPS 2007. IEEE International Workshop on
Conference_Location :
Tuusula
Print_ISBN :
978-1-4244-0998-3
Electronic_ISBN :
978-1-4244-0999-0
Type :
conf
DOI :
10.1109/GENSIPS.2007.4365838
Filename :
4365838
Link To Document :
بازگشت