DocumentCode :
1902107
Title :
Estimation of hyperspectral covariance matrices
Author :
Ben-David, Avishai ; Davidson, Charles E.
Author_Institution :
Res., Dev. & Eng. Command, Edgewood Chem. Biol. Center, U.S. Army, Aberdeen Proving Ground, MD, USA
fYear :
2011
fDate :
24-29 July 2011
Firstpage :
4324
Lastpage :
4327
Abstract :
Estimation of covariance matrices is a fundamental step in hyperspectral remote sensing where most detection algorithms make use of the covariance matrix in whitening procedures. We present a simple method to improve the estimation of the eigenvalues of a sample covariance matrix. The method achieves two objectives simultaneously: improved estimation of eigenvalues and improved condition number (regularization). Our method is based on the Marcenko-Pastur law, theory of eigenvalue bounds, and energy conservation.
Keywords :
covariance matrices; eigenvalues and eigenfunctions; geophysical image processing; geophysical signal processing; remote sensing; statistical analysis; Marcenko-Pastur law; detection algorithms; eigenvalue bounds; eigenvalue estimation; energy conservation; hyperspectral covariance matrix estimation; hyperspectral remote sensing; whitening procedures; Covariance matrix; Eigenvalues and eigenfunctions; Energy conservation; Estimation; Hyperspectral imaging; covariance matrices; eigenvalues and eigenfunctions; hyperspectral detection and signal processing algorithms; regularization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International
Conference_Location :
Vancouver, BC
ISSN :
2153-6996
Print_ISBN :
978-1-4577-1003-2
Type :
conf
DOI :
10.1109/IGARSS.2011.6050188
Filename :
6050188
Link To Document :
بازگشت