Title :
Efficient large Pearson correlation matrix computing using hybrid MPI/CUDA
Author :
Kijsipongse, Ekasit ; U-ruekolan, Suriya ; Ngamphiw, Chumpol ; Tongsima, Sissades
Author_Institution :
Large Scale Simulation Res. Lab., Nat. Electron. & Comput. Technol. Center, Pathumthani, Thailand
Abstract :
The calculation of pairwise correlation coefficient on a dataset, known as the correlation matrix, is often used in data analysis, signal processing, pattern recognition, image processing, and bioinformatics. With the state-of-the-art Graphic Processing Units (GPUs) that consist of massive cores capable to do processing up to several Gflops, the calculation of correlation matrix can be accelerated several times over traditional CPUs. However, due to the rapid growth of the data in the digital era, the correlation matrix calculation becomes computing intensive which needs to be executed on multiple GPUs. As of now, GPUs are common components in data center at many institutions. Their GPU deployment tends towards a GPU cluster which each node is equipped with GPUs. In this paper, we propose a parallel computing based on the hybrid MPI/CUDA programming for fast and efficient Pearson correlation matrix calculation on GPU clusters. At coarse grain parallelism, the correlation matrix is partitioned into tiles which are distributed to execute concurrently on many GPUs using MPI. At fine grain level, the CUDA kernel function on each node performs massively parallel computing on a GPU. To balance load across all GPUs, we adopt the work pool model which there is a master node that manages tasks in the work pool and dynamically assign tasks to worker nodes. The result of the evaluation shows that the proposed work can ensure the load balance across different GPUs and thus gives better execution time than using a simple static data partitioning.
Keywords :
computer graphic equipment; coprocessors; matrix algebra; message passing; parallel processing; CUDA kernel function; GPU clusters; bioinformatics; coarse grain parallelism; data analysis; efficient large Pearson correlation matrix computing; graphic processing units; hybrid MPI/CUDA programming; image processing; massively parallel computing; multiple GPU; pairwise correlation coefficient; pattern recognition; signal processing; Correlation Coefficient; GPU CUDA; MPI;
Conference_Titel :
Computer Science and Software Engineering (JCSSE), 2011 Eighth International Joint Conference on
Conference_Location :
Nakhon Pathom
Print_ISBN :
978-1-4577-0686-8
DOI :
10.1109/JCSSE.2011.5930127