DocumentCode :
1906129
Title :
Optimal knot selection for least-squares fitting of noisy data with spline functions
Author :
Blair, Jerome
Author_Institution :
Nat. Security Technol., LLC, Las Vegas, NV
fYear :
2008
fDate :
12-15 May 2008
Firstpage :
27
Lastpage :
32
Abstract :
An automatic data-smoothing algorithm for data from digital oscilloscopes is described. The algorithm adjusts the bandwidth of the filtering as a function of time to provide minimum mean squared error at each time. It produces an estimate of the root-mean-square error as a function of time and does so without any statistical assumptions about the unknown signal. The algorithm is based on least-squares fitting to the data of cubic spline functions.
Keywords :
least mean squares methods; smoothing methods; splines (mathematics); statistical analysis; automatic data-smoothing algorithm; cubic spline functions; digital oscilloscopes; filtering bandwidth; least-squares fitting; minimum mean squared error; noisy data; optimal knot selection; root-mean-square error; spline functions; statistical assumptions; Bandwidth; Filtering algorithms; Measurement errors; Noise measurement; Oscilloscopes; Sampling methods; Smoothing methods; Spline; White noise; Yield estimation; data smoothing; estimation; multiresolution analysis; spline functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC 2008. IEEE
Conference_Location :
Victoria, BC
ISSN :
1091-5281
Print_ISBN :
978-1-4244-1540-3
Electronic_ISBN :
1091-5281
Type :
conf
DOI :
10.1109/IMTC.2008.4546998
Filename :
4546998
Link To Document :
بازگشت