Abstract :
Sleep scheduling is a widely used mechanism in wireless sensor networks (WSNs) to reduce the energy consumption since it can save the energy wastage caused by the idle listening state. In a traditional sleep scheduling, however, sensors have to start up numerous times in a period, and thus consume extra energy due to the state transitions. The objective of this paper is to design an energy efficient sleep scheduling for low data-rate WSNs, where sensors not only consume different amounts of energy in different states (transmit, receive, idle and sleep), but also consume energy for state transitions. We use TDMA as the MAC layer protocol, because it has the advantages of avoiding collisions, idle listening and overhearing. We first propose a novel interference-free TDMA sleep scheduling problem called contiguous link scheduling, which assigns sensors with consecutive time slots to reduce the frequency of state transitions. To tackle this problem, we then present efficient centralized and distributed algorithms that use time slots at most a constant factor of the optimum. The simulation studies corroborate the theoretical results, and show the efficiency of our proposed algorithms.
Keywords :
access protocols; distributed algorithms; electromagnetic wave interference; scheduling; time division multiple access; wireless sensor networks; MAC layer protocol; TDMA sleep scheduling; contiguous link scheduling; distributed algorithm; energy consumption; time division multiple access; wireless sensor network; Delay; Energy consumption; Energy efficiency; Frequency; Interference; Media Access Protocol; Processor scheduling; Sleep; Time division multiple access; Wireless sensor networks;