DocumentCode :
1907771
Title :
Co-training with adaptive Bayesian classifier combination
Author :
Yaslan, Yusuf ; Cataltepe, Zehra
Author_Institution :
Comput. Eng. Dept., Istanbul Tech. Univ., Istanbul
fYear :
2008
fDate :
27-29 Oct. 2008
Firstpage :
1
Lastpage :
4
Abstract :
In a classification problem, when there are multiple feature views and unlabeled examples, co-training can be used to train two separate classifiers, label the unlabeled data points iteratively and then combine the resulting classifiers. Especially when the number of labeled examples is small due to expense or difficulty of obtaining labels, co-training can improve classifier performance. For binary classification problems, mostly, the product rule has been used to combine classifier outputs. In this paper, we propose an adaptive Bayesian classifier combination method which selects either the Bayesian or the product combination method based on the belief values. We compare our adaptive Bayesian method with Bayesian, product and maximum classifier combination methods for the multi-class pollen image classification problem. Two different feature sets, Haralickpsilas texture features and features obtained using local linear transforms are used for co-training. Experimental results show that adaptive Bayesian combination with co-training performs better than the other three methods.
Keywords :
Bayes methods; belief maintenance; feature extraction; image classification; image texture; pattern classification; transforms; Haralick texture feature; adaptive Bayesian classifier combination method; belief value; binary classification; classification problem; classifier performance; feature set; local linear transform; multiclass pollen image classification; multiple feature view; product combination; product rule; unlabeled example; Bayesian methods; Biomedical imaging; Concatenated codes; Data engineering; Image classification; Labeling; Pattern recognition; Shape; Training data; Web pages;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Information Sciences, 2008. ISCIS '08. 23rd International Symposium on
Conference_Location :
Istanbul
Print_ISBN :
978-1-4244-2880-9
Electronic_ISBN :
978-1-4244-2881-6
Type :
conf
DOI :
10.1109/ISCIS.2008.4717971
Filename :
4717971
Link To Document :
بازگشت